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Abstract
Satake diagrams of affine Kac–Moody algebras (untwisted and twisted) are
obtained from their Dynkin diagrams. These diagrams give a classification of
restricted root systems associated with these algebras. In the case of simple Lie
algebras, these root systems and Satake diagrams correspond to symmetric
spaces which have recently found many physical applications in quantum
integrable systems, quantum transport problems, random matrix theories etc.
We hope these types of root systems may have similar applications in theoretical
physics in future and may correspond to symmetric spaces analogue of affine
Kac–Moody algebras if they exist.

PACS numbers: 02.10.−v, 02.20.Qs

1. Introduction

Recent times have witnessed a lot of activity in the study of quantum integrable systems
[1] and quantum transport problems [2, 3] which are based on the theory of symmetric
spaces [4, 5]. The symmetric spaces through their root systems are related to Calogero–
Sutherland models of quantum integrable systems. At the same time, the theory of symmetric
space provides a classification of random matrix models [6–10] which are studied in various
quantum transport problems. Mainly Wigner–Dyson ensemble, chiral, random matrix transfer
ensemble, N S ensemble are linked to one of the eleven classes of symmetric spaces in
the Cartan classification scheme. These symmetric spaces along with symmetric spaces
related with exceptional Lie algebras can be classified in terms of Satake diagrams which are
nothing but modified Dynkin diagrams and correspond to modified root lattices (restricted
root systems). At the same time these diagrams also classify all the real forms of complex Lie
algebras up to isomorphism. Now it is beyond doubt that Kac–Moody algebras, in particular
the affine algebras, have wide physical applications in the context of integrable systems,
two dimensional field theories, string theories etc. Keeping this in view, in this paper we
have obtained an exhaustive list of Satake diagrams of affine Kac–Moody algebras together
with the Dynkin diagrams of the restricted root systems. This will serve two purposes:
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first it will be a preliminary stage for one way of classification of restricted root systems
associated with affine Kac–Moody algebras. We are not sure but hope that these systems
may correspond to symmetric spaces analogue of affine Kac–Moody algebras if they exist.
Second, these diagrams can also classify the real forms of affine Kac–Moody algebras much
of which has been discussed already by different authors [11–14, 21]. Also, the involutive
automorphisms determined from these diagrams [15, 16] have been used successfully for the
direct determination of Iwasawa/Langlands decompositions associated with these algebras
[17, 18].

The organization of the paper is as follows: in section 2, we give a brief introduction to
involutive automorphisms and the real forms of affine Kac–Moody algebras. Here we briefly
outline the essential procedure for the construction of Satake diagrams, and we enumerate
the exhaustive list of these diagrams together with the Dynkin diagrams of restricted root
systems for affine Kac–Moody algebras (both twisted and untwisted). Section 3 contains a
few concluding remarks.

2. Involutive automorphisms and real forms of affine Kac–Moody algebra

The involutive automorphisms and the real forms of affine Kac–Moody algebras have been
discussed in great details by various authors [11–14, 21–23]. However, for the sake of
completeness we enumurate the salient points.

We define a group G acting on a Kac–Moody Lie algebra g via adjoint map. Ad:
G → Aut(g). It is generated by the subgroups Uα for α ∈ �;� being the root system of g

and Ad (Uα) = exp{ad(gα)}, where gα is the α root space in the Lie algebra g and Uα is a
subgroup in the Lie group.

A maximal adg-diagonalizable subalgebra of g is called a Cartan subalgebra. Every
Cartan subalgebra of g is Ad (G)-conjugate to the standard Cartan subalgebra h. A Borel
subalgebra of g is a maximal solvable subalgebra. It is always conjugated by Ad (G) to b+ or
b−, where

b+ = h ⊕
α>0

gα (2.1)

b− = h ⊕
α<0

gα. (2.2)

But b+ and b− are not conjugated under Ad (G), so there are exactly two conjugacy classes of
Borel subalgebra: the positive and negative subalgebras.

If Aut(g) is the group of all automorphisms of g and Autr (g) is the group of all semilinear
automorphisms of g, then the group Aut(g) is normal in Autr (g) and is of index 2. An
automorphism τ of g is called semilinear if τ(λx) = λ̄τ (x) for λ ∈ C.

A semilinear automorphism of g is said to be the first kind if it transforms a Borel
subalgebra into a Borel subalgebra of the same sign. A semilinear automorphism of g is
said to be of the second kind if it transforms a Borel subalgebra into a Borel subalgebra
of the opposite sign. It has been well established that any automorphism of g is either an
automorphism of the first kind or automorphism of the second kind.

If g is a complex affine Kac–Moody algebra, a Kac–Moody subalgebra gr of g is a real
form of g if g is the complexification of gr i.e. if g = gr + igr (direct sum). Such a real form
gr determines a mapping C: g → g, namely x + iy → x − iy(x, y ∈ gr ). The mapping C has
the following properties:

(i) C is semilinear, i.e. C(πx + µy) = π̄C(x) + µ̄C(y), for x, y ∈ g and π,µ ∈ C.
(ii) C is an involution i.e. C2 = 1g

(iii) C[x, y] = [Cx,Cy], for x, y ∈ g. (2.3)
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A map C: g → g with these properties is a bijection called a semilinear involution
of g. Conversely any semilinear involution C of g uniquely determines a real subalgebra
gr = {x ∈ g;Cx = x} such that g = gr + igr , that is to say a real form of g. The real form gr

of g is said to be almost split if it is associated with a semilinear involution of first kind and is
said to be almost compact if it is associated with a semilinear involution of second kind.

Thus, we see that a semilinear automorphism of order 2 of g is called a semi-involution
of g. For any semi-involution σ ′, we have the decomposition Autr (g) = {1, σ ′} ⊗ Aut(g)

(⊗ denotes semidirect product). We denote by σ ′
n the conjugation of g with respect to the

standard split form. We call σ ′
n the standard normal semi-involution of g. This commutes with

the standard Cartan involution ω.
Let ω′

s = σ ′
nω = ωσ ′

n. Then ω′
s is called the standard Cartan semi-involution of g. Its

algebra of fixed points is the standard compact real form of g. A Cartan semi-involution of g is
a semi-involution ω′ conjugate to ω′

s, by an element of Autr (g). Then ω′ is a semi-involution
of the second kind and the associated real form is called compact real form t1 of g.

Let σ ′ be a semi-involution and ω′ be a Cartan semi-involution. If σ ′ and ω′ stabilize the
same Cartan subalgebra h, one may suppose by conjugating by G that ω′ commutes with σ ’.

Let σ ′ be a semi-involution of g of the second kind and let gr = gσ ′
be the corresponding

almost compact real form. A Cartan semi-involution ω′, which commutes with σ ′ is called a
Cartan semi-involution for σ ′ or gr . The involution σ = σ ′ω′ (resp. its restriction ω′

r to gr )
is called a Cartan involution of σ ′ (resp. of gr ). The algebra of fixed points t0 = gσ

r is called
a maximal compact subalgebra of gr . We have the Cartan decomposition gr = t0 ⊕ p0 and
t1 = t0 ⊕ ip0, where p0 is eigenspace of ω′

r for the eigenvalue −1.
We obtain under Aut(g) a one–one correspondence between the conjugacy classes of

(linear) involution of the second kind of g and the conjugacy classes of almost split real forms
of g. Now, we consider

(1) The semi-involutions σ ′ of the second kind of g.
(2) The involutions θ of the first kind of g.
(3) The relation σ ′ ≈ θ if and only if,

(a) ω′ = θσ ′ = σ ′θ is a Cartan semi-involution.
(b) θ and σ ′ stabilize the same Cartan subalgebra h.
(c) h is contained in a minimal σ ′-stable positive parabolic subalgebra.

Then this relation induces a bijection between the conjugacy classes under Aut(g) of
semi-involutions of the second kind and conjugacy classes of involutions of the first kind.

Thus, we obtain under Aut(g) a one–one correspondence between the conjugacy classes
of (linear) involutions of the first kind of g (including identity) and the conjugacy classes of
almost compact real forms of g. The compact real form is unique; it corresponds to identity.
A classification of involutions of an affine Kac–Moody Lie algebra is given by Levstein [13].
A classification of automorphism of finite order of affine Kac–Moody Lie algebra of type A(1)

n

is given by Kobayashi [12]. A description of automorphism of Kac–Moody algebras is given
by Kac and Wang [11] and Cornwell et al [21, 22].

Now, let C be the semilinear involution of g defined by gr , so that C(x + iy) = x − iy for
x, y ∈ gr . Now C acts on the root spaces as follows. For each root α ∈ R, (R being the set of
all roots of the Kac–Moody algebra), define σ(α) by

−(σ (α))(x) = α(C(x)) for x ∈ h, where h is a Cartan subalgebra (2.4)

then

C(gα) = g−σ(α). (2.5)



1388 L K Tripathy and K C Pati

Table 1. A
(1)
2 . Involutive automorphisms from Satake diagrams.

Table 2. Restricted root systems from Satake diagrams.
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Table 3. Affine untwisted Kac–Moody algebra.

The mapping α → −σ(α) extends by linearity to an involutary isometry under which
R− = R −R0 is stable and R0 is the set of roots α ∈ R such that α −σ(α) = 0. Therefore, we
are led to consider pairs (R, σ ), where R is a root system and σ is an involutary isometry such
that σ(R) = R. The pair (R, σ ) is said to be normal if α ∈ R implies α +σ(α) �∈ R. Each real
Kac–Moody algebra determines a normal pair (R, σ ) which determines gr up to isomorphism.
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Table 3. (Continued.)
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Table 3. (Continued.)

This condition is used in determining the Satake diagrams and the corresponding involutive
automorphisms out of all possibilities. The construction of the Satake diagrams associated
with a real Kac–Moody algebra and corresponding Dynkin diagrams of restricted root system
proceed as follows.
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Table 3. (Continued.)

Let R be a root system of an affine Kac–Moody algebra. For α ∈ R, let λ = ᾱ = α−σ(α).
Let us introduce R− = {α|ᾱ �= 0, α ∈ R}. Also let R0 = {α ∈ R|ᾱ = 0}. The basis B of
R can now be decomposed into two disjoint subsets, B0 and B−, where B0 = B ∩ R0 and
B− = B − B0.

If B− = B − B0 = {αi} and B0 = {βl}, then it can be shown that

−σ(αi) = απ(i) +
∑

ηilβl (2.6)

where π is an involutive permutation of {0, 1, 2, . . . , r} and ηil are non-negative integers. We
can now associate with B its Satake diagrams. Denote the root αi with white circles as usual
and the root βl by black circles. If π(i) = k, then it is indicated by a double arrow between
open circles for αi and αk . The Satake diagram determines the involution of R uniquely. We
note that σ(βl) = βl and if α ∈ R then α +σ(α) �∈ R. If all the vertices of the Satake diagrams
of g are black circles, then the real form is compact. If all the vertices of the Satake diagrams
of g are white circles and if the diagram contains no arrows, then the real form is split. All
other real forms lie in between these two extremes. Let (R, σ ) be a normal pair with R being a
root system in a vector space V . Let V = V+ + V− be the direct sum decomposition of V into
eigenspaces for −σ corresponding to eigenvalues ±1. Then the collection � = {ᾱ|α ∈ R}
forms a root system in V+, which are referred to as a restricted root system. These vectors are
essentially projections of the roots R onto V+ and we can choose simple roots from � to form
a restricted Dynkin diagram.

To illustrate our points, we have taken A
(1)
1 and A

(1)
2 as two examples and have shown

how to draw the Satake diagrams of these algebras and obtain corresponding real forms.
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Table 4. Affine twisted Kac–Moody aglebras.

(a) A
(1)
1 : the generalized Cartan matrix for this algebra is

(
2 −2

−2 2

)
. The Dynkin diagram, the

Satake diagrams and the involutive automorphisms of A
(1)
1 are as shown below.
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Thus, we see that we have four real forms of this algebra each corresponding to one type
of involutive automorphism, which is similar to the results obtained earlier [12, 21–23].

(b) A
(1)
2 : the generalized Cartan matrix for this algebra is

(
2 −1 −1

−1 2 −1

−1 −1 2

)
. The Dynkin diagram,

the Satake diagrams and the corresponding involutive automorphisms are as given in
table 1.

Thus, for A
(1)
2 we see that we have five real forms of this algebra each corresponding to

one type of involutive automorphism [12, 21–23].
Once the Satake diagrams are obtained it is very easy to construct the corresponding

Dynkin diagrams of the restricted root system as mentioned previously in this section. To
illustrate our point, the Dynkin diagrams corresponding to the restricted root system obtained
from the Satake diagrams of A

(1)
3 and E

(1)
6 are given in table 2.

In the case of ordinary Lie algebras these Dynkin diagrams correspond to symmetric
spaces, which have many applications as mentioned earlier. But in the case of affine Kac–
Moody algebras, we do not know what type of physical and mathematical significance these
diagrams will have. However, we are trying to address these aspects in a forthcoming paper.

Now we list Satake diagrams together with Dynkin diagrams of restricted root system
associated with all untwisted as well as twisted affine Kac–Moody algebras in tables 3 and 4.

3. Conclusion

In this paper, we have demonstrated how Satake diagrams are one of the easiest tools to classify
the restricted root system associated with affine Kac–Moody algebras. Since symmetric
spaces/real forms are related to the involutive automorphisms of Lie algebras, this technique
may also provide a basis for the determination of symmetric space analogues (if they exist) and
real forms associated with affine Kac–Moody algebras. The Satake diagrams themselves can
be exploited to find the involutive automorphisms which can be used to determine directly the
Iwasawa and Langland’s [15–18] decomposition of the corresponding algebras (particularly
low rank). The same technique can also be used with suitable modification to determine the
real forms and symmetric super spaces associated with simple Lie (super) [19] algebras as
well as that of affine Kac–Moody (super) algebras [20]. Such types of studies are currently in
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progress and will be communicated in future. We hope the restricted root systems determined
from such type of studies may have direct physical relevance with quantum integrable systems
and quantum transport problems which is beyond the scope of this paper.
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